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a b s t r a c t

In a large software system knowing which files are most likely to be fault-prone is valuable information
for project managers. They can use such information in prioritizing software testing and allocating
resources accordingly. However, our experience shows that it is difficult to collect and analyze fine-
grained test defects in a large and complex software system. On the other hand, previous research has
shown that companies can safely use cross-company data with nearest neighbor sampling to predict
their defects in case they are unable to collect local data. In this study we analyzed 25 projects of a large
telecommunication system. To predict defect proneness of modules we trained models on publicly avail-
able Nasa MDP data. In our experiments we used static call graph based ranking (CGBR) as well as nearest
neighbor sampling for constructing method level defect predictors. Our results suggest that, for the ana-
lyzed projects, at least 70% of the defects can be detected by inspecting only (i) 6% of the code using a
Naïve Bayes model, (ii) 3% of the code using CGBR framework.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Software testing is one of the most critical and costly phases in
software development. Project managers need to know ‘‘when to
stop testing?” and ‘‘which parts of the code to test?”. The answers
to these questions would directly affect defect rates and product
quality as well as resource allocation (i.e. experience of test staff,
how many people to allocate for testing) and the cost.

As the size and complexity of software increases, manual
inspection of software becomes a harder task. In this context, de-
fect predictors have been effective secondary tools to help test
teams locate potential defects accurately (Menzies, Greenwald, &
Frank, 2007). These tools are built using historical defect databases
and are expected to generalize the statistical patterns for unseen
projects. Thus, collecting defect data from past projects is the key
challenge for constructing such predictors.

In this paper, we share our experience for building defect pre-
dictors in a large telecommunication system and present our initial
results. We have been working with the largest GSM operator
(�70% market share) in Turkey, Turkcell, to improve code quality
and to predict defects before the testing phase. Turkcell is a global
company whose stocks are traded in NYSE and operates in Turkey,
Azerbaijan, Kazakhstan, Georgia, Northern Cyprus and Ukraine
with a customer base of 53.4 million. The underlying system is a
standard 3-tier architecture, with presentation, application and
ll rights reserved.
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data layers. Our analysis focuses on the presentation and applica-
tion layers. However, the content in these layers cannot be sepa-
rated as distinct projects. We were able to identify 25 critical
components, which we will refer to as project throughout this
paper.

We used a defect prediction model that is based on static code
attributes like lines of code, Halstead and McCabe attributes. Some
researchers have argued against the use of static code attributes
claiming that their information content is very limited (Fenton &
Neil, 1999). However, static code attributes are easy to collect,
interpret and many recent research have successfully used them
to build defect predictors (Menzies, Greenwald et al., 2007; Men-
zies, Turhan, Bener, & Distefano, 2007; Turhan & Bener 2007; Tur-
han & Bener 2008). Furthermore, the information content of these
attributes can be increased i.e. using call graphs (Kocak, Turhan, &
Bener, 2008a; Kocak, Turhan, & Bener, 2008b). Kocal et al. show
that integrating call graph information in defect predictors de-
creases their false positive rates while preserving their detection
rates. Previously, Turkcell did not use company-wide policies for
collecting and analyzing such metrics. In our research, we have col-
lected these metrics from the abovementioned 25 projects. We
have also collected the static call graphs for these projects.

The collection of static code metrics and call graphs can be eas-
ily carried out using automated tools (Menzies, Greenwald et al.,
2007; Menzies, Turhan et al., 2007; Turhan & Bener 2008). How-
ever, as we mentioned earlier, matching these measurements to
software components is the most critical factor for building defect
predictors. Unfortunately, in our case, it was not possible to match
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project # modules features LOC

Trcll 1 572 29 6206 

Trcll 2 3089 29 80941 

Trcll 3 3963 29 45323 

Trcll 4 260 29 5803 

Trcll 5 2698 29 53690 

Trcll 6 155 29 4526 

Trcll 7 120 29 5423 

Trcll 8 4320 29 79114 

Trcll 9 350 29 10221 

Trcll 10 2076 29 61602 

Trcll 11 57 29 2485 
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past defects with the software components in the desired granular-
ity, module level, where we mean the smallest unit of functionality
(i.e. java methods, c functions). Previous research in such large sys-
tems use either component or file level code churn metrics to pre-
dict defects (Bell, Ostrand, & Weyuker 2006; Nagappan & Ball,
2006; Ostrand & Weyuker, 2002; Ostrand, Weyuker, & Bell 2005;
Ostrand, Weyuker, & Bell, 2004; Ostrand, Weyuker, & Bell, 2007;
Zimmermann & Nagappan, 2006). The reason is that file level is
the smallest granularity level that can be achieved. For example,
Nagappan, Ball and Zimmermann analyze Microsoft software in
component level and Ostrand, Weyuker and Bell analyze AT&T
software in file level to report effective predictors used in practice.
However, defect predictors become more precise as the measure-
ments are gathered from smaller units (Ostrand et al., 2007).

Therefore, we decided to use module level cross-company data
to predict defects for Turkcell projects ( Menzies, Turhan et al.,
2007). Specifically, we have used module level defect information
from Nasa MDP projects to train defect predictors and then ob-
tained predictions for Turkcell projects. Previous research have
shown that cross-company data gives stable results and using
nearest neighbor sampling techniques further improves the pre-
diction performance when cross-company data is used (Menzies,
Greenwald et al., 2007; Menzies, Turhan et al., 2007; Turhan &
Bener, 2008). Our experiment results with cross-company data
on Turkcell projects, estimate that we can detect 70% of the defects
with a 6% LOC investigation effort.

While nearest neighbor algorithm improves the detection rate
of predictors built on cross-company data, false alarm rates remain
high. In order to decrease false alarm rates, we included the call
graph based ranking (CGBR) framework in our analysis based on
our previous research. We used graph based ranking (CGBR) frame-
work (Kocak et al., 2008a; Kocak et al., 2008b) to software mod-
ules. Using CGBR framework improved our estimated results
such that the LOC investigation effort decreased from 6% to 3%.

The rest of the paper is organized as follows: In section 2 we
briefly review the related literature, in Section 3 we explain the
project data. Section 4 explains our rule-based analysis. Learning
based model analysis is discussed in Section 5. The last section
gives conclusion and future direction.
Trcll 12 497 29 9767 

Trcll 13 189 29 5425 

Trcll 14 132 29 2965 

Trcll 15 1826 29 36280 

Trcll 16 1106 29 42431 

Trcll 17 460 29 6933 

Trcll 18 345 29 10601 

Trcll 19 273 29 6258 

Trcll 20 339 29 3507 

Trcll 21 150 29 1971 

Trcll 22 19921 29 215265 

Trcll 23 4518 29 51273 

Trcll 24 232 29 10135 

Trcll 25 347 29 4880 

Fig. 1. Turkcell datasets used in this study.
2. Related work

Ostrand and Weyuker have been performing similar research
for AT&T and they also report that it is hard to conduct an empir-
ical study in large systems due to difficulty in finding the relevant
personnel and the high cost of collecting and analyzing data (Os-
trand & Weyuker, 2002). Nevertheless, there are notable research
in large software systems (Adams, 1984; Basili & Perricone,
1984; Bell et al., 2006; Fenton & Ohlsson, 2000; Menzies, Green-
wald et al.,2007; Menzies, Turhan et al., 2007; Ostrand & Weyuker,
2002; Ostrand et al., 2004; Ostrand et al., 2005; Ostrand et al.,
2007). Fenton and Ohlsson presented results of an empirical study
on two versions of a large-scale industrial software, which showed
that the distribution of the faults and failures in a software system
can be modeled by Pareto principle (Fenton & Ohlsson, 2000). They
claimed that neither size nor complexity explain the number of
faults in a software system. Other researchers found interesting re-
sults showing that small modules are more fault-prone than larger
ones (Koru & Liu, 2005a; Koru & Liu, 2005b; Malaiya & Denton,
2000; Zhang 2008). Our results will also show evidence in favor
of this fact.

As mentioned, Ostrand, Weyuker and Bell also worked with
large telecommunications software systems in AT&T (Bell et al.,
2006; Ostrand & Weyuker, 2002; Ostrand et al., 2004; Ostrand
et al., 2005; Ostrand et al., 2007). They predicted fault-prone files
of the large software system by using a negative binominal regres-
sion model. They report that their model can detect 20% of the files
that contain 80% of all faults. Similarly, Nagappan, Ball and Zim-
mermann analyzed several Microsoft software components using
static code and code churn metrics to predict post-release defects.
They observed that different systems could be best characterized
by different sets of metrics (Nagappan & Ball, 2006; Zimmermann
& Nagappan, 2006).

Our work differs at a large extent from previous work. Ostrand,
Weyuker and Bell carried out the most similar work to this re-
search, where they used file level measurements as a basic compo-
nent. However, we prefer using modules, since modules provide
finer granularity. They have collected data from various releases
of projects and predict post-release defects, whereas we have data
from single release of 25 projects and we try to predict pre-release
defects.
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Our contribution in this research is to analyze a large-scale
industrial system at the module level. To accomplish this, we use
a state-of-the-art cross-company defect predictor. We further
demonstrate its practical use by improving its performance with
nearest neighbor sampling technique. We also use a predictor that
not only models intra module complexities, but also inter module
connections. We used call graph based ranking (CGBR) framework
and show that combining inter and intra module metrics not only
increases the performance of defect predictors but also decreases
the required testing effort for manual inspection of the source
code.

3. Data

Fig. 1 tabulates 25 ‘Trcll’ projects that are analyzed in this re-
search. All projects are implemented in Java and we have gathered
29 static code metrics from each. In total, there are approximately
48,000 modules spanning 763,000 lines of code. All projects are
from presentation and application layers.

We used external (i.e. cross-company) data from Nasa MDP that
are available online in the PROMISE repository (Boetticher, Men-
zies, & Ostrand, 2007; NASA). Fig. 2 shows the characteristics of
Nasa projects. Each Nasa dataset has 22 static code attributes. In
our analysis, we have used only the common attributes (there
are 17 of them) that are available in both data sources.

4. Data analysis

4.1. Average-case analysis

Fig. 1 shows the average values of 17 static code metrics col-
lected from the 25 telecom datasets used in this research. It also
shows the recommended intervals (i.e. minimum and maximum
values) based on statistics from Nasa MDP projects, when applica-
Fig. 2. Nasa datasets used in this study.

Fig. 3. Average-case analysis about Turkcell datasets.
ble. Cells marked with gray color correspond to metrics that are
out of the recommended intervals. There are two clear observa-
tions in Fig. 3:

� Developers do not write comments throughout the source code.
� Low number of operands and operators indicate small, modular

methods.

While the latter observation can be interpreted as a company
objective to decrease maintenance effort, the former contradicts
such an objective and requires action. Note that, this shows how
a simple average case analysis can point out conceptual problems
in company objectives as long as measurement is performed.

4.2. Rule-based analysis

Based on the recommended intervals in Fig. 3, we have defined
simple rules for each metric. These rules fire, if a module’s metric is
not in the specified interval, indicating the manual inspection of
the module. Fig. 4 shows the 17 basic rules and corresponding met-
rics, along with 2 derived rules. The first derived rule, Rule 18, de-
fine a disjunction among 17 basic rules. That is Rule 18 fires if any
basic rule fires. Note that, the gray colored rules in Fig. 4 fire too
frequently that cause rule 18 to fire all the time. The reason is that
the corresponding comment and Halstead metrics’ related inter-
vals do not fit Turkcell’s code characteristics. A solution would be
to define new intervals for these metrics, however, this is not pos-
sible since there are no defect data to derive these inspection-trig-
gering intervals.

In order to overcome this problem we have defined Rule 19 that
fires if all basic rules, but the Halstead fire. This reduces the firing
frequency of the disjunction rule. However, Rule 19 states that
6484 modules (14%) corresponding to 341,655 LOC (45%) should
be inspected in order to detect potential defects.

Inspection of 45% of total LOC is impractical. On the other hand,
learning based model will be shown to be far more effective. We
have designed two types of analysis using the learning based
model:

� Analysis #1 uses the cross-company predictor with k-nearest
neighbor sampling for predicting fault-prone modules.

� Analysis #2 combines inter and intra module metrics, in other
words incorporate CGBR framework into static code attributes
and than apply the model of Analysis #1.
Fig. 4. Rule-based analysis. Each rule corresponds to the recommended interval for
the corresponding metric. Module column shows the number of columns that a rule
is fired and LOC column shows total LOC for these modules.
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5. Analysis
5.1. Analysis #1: Naïve Bayes

In this analysis we used the Naïve Bayes data miner that
achieves significantly better results than many other mining algo-
rithms for defect prediction (Menzies, Greenwald et al., 2007). We
selected a random 90% subset of cross-company Nasa data to train
the model. From this subset, we have selected similar projects that
are similar to Trcll in terms of Euclidean distance in the 17 dimen-
sional metric space. The nearest neighbors in the random subset
are used to train a predictor, which then made predictions on the
Trcll data. We repeated this procedure 20 times and raised a flag
for modules that are estimated as defective at least in 10 trials.
An identical approach is used in previous research and showed
its validity by demonstrating that predictors learned on NASA
Aerospace software can achieve 70–90% detections rate on Turkish
white-goods controller software (Menzies, Turhan et al., 2007).

Fig. 5 shows the results from the first analysis. The estimated
defect rate is 15% that is consistent with the rule-based model’s
estimation. However, there is a major difference between the
two models in terms of their practical implications:

� For the rule-based model, estimated defective LOC corresponds
to 45% of the whole code, while module level defect rate is 14%.

� For the learning based model, estimated defective LOC corre-
sponds to only 6% of the code, where module level defect rate
is still estimated as 15%.

Why there is a significant difference between the estimated
defective LOCs, thus estimated testing efforts of two models? That
is because rule base model makes decisions based on individual
metrics and it has a bias towards more complex and larger mod-
ules. On the other hand learning based model combines all ‘signals’
from each metric and estimates that defects are located in smaller
modules. There are previous reports in literature that also validates
that most of the defects reside in smaller modules rather than the
Fig. 5. Analysis #1 results.
large ones (Koru & Liu, 2005a; Koru & Liu, 2005b; Malaiya & Den-
ton, 2000; Zhang 2008). Our results are consistent with these re-
search results. One possible reason is that big and complex
modules are implemented more carefully and small modules are
paid less attention.

5.2. Analysis #2: call graphs

We argue that module interactions play an important role in
determining the complexity of the overall system rather than
assessing modules individually. Therefore used a model to investi-
gate the module interactions with static call graphs that is pro-
posed in a previous research (Kocak et al., 2008a; Kocak et al.,
2008b). In that study, Kocal et al. proposed the call graph based
ranking (CGBR) framework that is applicable to any static code
metrics based defect prediction model. Static code metrics mea-
sure the inner complexities of the modules (i.e. inter module),
whereas call graphs models the interactions between modules
(i.e. intra module).

We created N � N matrix for building the call graphs, where N is
the number of modules. In this matrix, rows contain the informa-
tion whether a module calls the others or not. Columns contain
how many times a module is called by other modules. Inspired
from the web page ranking methods, we treated each caller-to-cal-
lee relation in the call graph as hyperlinks from a web page to an-
other. We then assigned equal initial ranks (i.e. 1) to all modules
and iteratively calculated module ranks using PageRank algorithm.

In this study we analyzed the static call graph matrices for only
22 projects, since the other 3 projects were so large that their call
graph analysis were not completed at the time of writing this pa-
per, due to high memory requirements.

In Analysis #2, we have calculated CGBR values, quantized them
into 10 bins and assigned each bin, a weight value from 0.1 to 1
considering their complexity levels. Then, we have adjusted the
static code attributes by multiplying each raw in the data table
with corresponding weights, before we trained our model as in
Analysis #1.

Fig. 6 shows the results of Analysis #2. The estimated LOC to in-
spect is halved compared to the previous analysis results. These
estimates suggest 96% improvement in testing efforts compared
to random testing strategy. In order to catch 70% of the defects,
Fig. 6. Analysis #2 results.



9990 B. Turhan et al. / Expert Systems with Applications 36 (2009) 9986–9990
the second model proposes to investigate only 3% proportion of the
all code. Note that, this model has been externally validated that it
can detect the same number of defective modules, while yielding
significantly lower false alarm rates. The decrease in estimated
investigation effort stems from the decreased false alarm rates.
6. Conclusions

In this study we investigate how to predict fault-prone modules
in a large software system. We have performed an average case
analysis for the 25 projects in order to determine the characteris-
tics of the implemented code base and observed that there were
contradicting measurements with the company objectives. Specif-
ically, the software modules were written using relatively low
number of operands and operators to increase modularity and to
decrease maintenance effort. However, we have also observed that
the code base was purely commented, which makes maintenance a
difficult task.

Our initial data analysis revealed that a simple rule-based mod-
el based on recommended standards on static code attributes esti-
mates a defect rate of 15% and requires 45% of the code to be
inspected. This is an impractical outcome considering the scope
of the system. Thus, we have constructed learning based defect
predictors and performed further analysis. We have used a cross-
company Nasa data to learn defect predictors, due to lack of local
module level defect data.

The first analysis confirms that the average defect rate of all
projects was 15%. While the simple rule-based module requires
inspection of 45% of the code, the learning based model suggested
that we needed to inspect only 6% of the code. This is from the fact
that rule-based model has a bias towards more complex and larger
modules, whereas learning based model predicts that smaller
modules contain most of the defects.

Our second analysis results employed data adjusted with CGBR
framework, which is externally validated not to change the median
probability of detection and to significantly decrease the median
probability of false alarm. The second analysis improved the esti-
mations further and suggested that 70% of the defects could be de-
tected by inspecting only 3% of the code.

Our future work consists of collecting local module level defects
to be able to build within-company predictors for this large tele-
communication system. We also plan to use file level code churn
metrics in order to predict production defects between successive
versions of the software.
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